Archaea in Biogeochemical Cycles

Pierre Offre, Anja Spang, and Christa Schleper

Department of Genetics in Ecology, University of Vienna, A-1090 Wien, Austria; email: pierre.offre@univie.ac.at, anja.spang@univie.ac.at, christa.schleper@univie.ac.at

Keywords
archaea, biogeochemical cycles, metabolism, carbon, nitrogen, sulfur

Abstract
Archaea constitute a considerable fraction of the microbial biomass on Earth. Like Bacteria they have evolved a variety of energy metabolisms using organic and/or inorganic electron donors and acceptors, and many of them are able to fix carbon from inorganic sources. Archaea thus play crucial roles in the Earth’s global geochemical cycles and influence greenhouse gas emissions. Methanogenesis and anaerobic methane oxidation are important steps in the carbon cycle; both are performed exclusively by anaerobic archaea. Oxidation of ammonia to nitrite is performed by *Thaumarcheota*. They represent the only archaeal group that resides in large numbers in the global aerobic terrestrial and marine environments on Earth. Sulfur-dependent archaea are confined mostly to hot environments, but metal leaching by acidophiles and reduction of sulfate by anaerobic, nonthermophilic methane oxidizers have a potential impact on the environment. The metabolisms of a large number of archaea, in particular those dominating the subsurface, remain to be explored.
INTRODUCTION

All currently known life forms gain the free energy required to meet the energetic cost of maintenance, growth, and reproduction through enzymatically catalyzed redox reactions. Life exploits many pairs of electron donors and acceptors (redox pairs) for the generation of biochemical energy and the assimilation of nutrients, but single species use only a specific subset of those redox pairs. The survival of all living organisms thus depends on the constant supply of different combinations of electron donors and acceptors, which are present in limited amounts in the biosphere and therefore need to be constantly recycled. The cycling of these chemical substances emerges from geophysical processes and the combined metabolisms of all life forms (96). These self-organized nutrient cycles, which are increasingly influenced by human activities, can be represented as networks of processes, connecting different reservoirs of substances and defining biogeochemical cycles for various chemical elements and molecules. Owing to their versatile metabolisms, microorganisms drive most of the biological fluxes of the elements—particularly the six major building blocks of life, hydrogen, carbon, nitrogen, sulfur, oxygen, and phosphorus—and thus shape the biogeochemistry of our planet (32).

For more than half a century, since Vladimir Vernadsky coined the term biogeochemistry in 1926, only Bacteria and Eukarya were considered to contribute significantly to global nutrient cycles. The Archaea, constituting the third fundamental domain of life, were not described until 50 years later (137). Until the early 1990s, they were perceived mainly as a group of microorganisms thriving in extreme habitats that have, except for the methanogens (130), little influence on global nutrient cycling. However, this view began to change when molecular biological techniques were introduced into microbial ecology. The discovery that archaea are found in oceanic plankton (23, 35) has triggered a huge number of follow-up studies showing that archaea represent an abundant and diverse group of microorganisms in the whole biosphere and suggesting that they have a significant impact on nutrient cycling. In addition to cultivation of novel archaeal strains, culture-independent techniques, in particular molecular biological, biochemical, and isotope-based methods, have since remained instrumental for recognizing and characterizing novel archaeal metabolisms and for estimating their environmental impact. Through these studies it has become increasingly evident that archaea are important players in both carbon and nitrogen cycling. In this review, the distribution of the Archaea in the biosphere and their role in extant biogeochemical cycles are discussed in light of recent discoveries.

THE DOMAIN ARCHAEA

Woese & Fox (137) and Woese et al. (138) provided the first evidence that Archaea constitute a third domain alongside Bacteria and Eukarya within the phylogenetic tree of life. This finding was
overwhelmingly corroborated by genomic and biochemical data showing that all archaea share unique membranes and have cell walls that differ from those of bacteria (36). Furthermore, they use distinctive informational processing machineries (e.g., replication and transcription) considered to be derived from a common ancestor with Eukarya (36). Since their discovery as a separate domain, the number of known taxa within the Archaea has been expanded continuously. As of November 2, 2012, there were 116 archaeal genera representing 450 cultivated and validly described species (http://www.bacterio.cict.fr). However, most of the archaeal diversity, currently referenced in public databases, remains uncultivated (117) and is known only from 16S rRNA gene sequences obtained from molecular surveys (24). Many of these uncultivated archaea are only distantly related to their closest cultivated relatives and specify numerous lineages representing a wide range of taxonomic ranks, up to the phylum level. Cultivated and uncultivated archaeal lineages have been classified in a few high-rank taxa (Figure 1), and a short overview of currently proposed archaeal phyla is provided below.
Most cultivated archaea are assigned to two major archaeal phyla, *Euryarchaeota* and *Crenarchaeota*, that were originally defined by Woese et al. (138). *Euryarchaeota* include eight taxonomic classes (i.e., *Methanopyri*, *Methanoscci*, *Methanobacteria*, *Methanomicrobia*, *Archaeoglobi*, *Halobacteria*, *Thermococi*, and *Thermoplasmata*) that include methanogens, methane-oxidizing archaea, denitrifiers, sulfate reducers, iron oxidizers, and organotrophs (61). Members of this phylum are globally distributed, and some lineages, often uncultivated ones, are abundant in marine waters, soils, and sediments (117, 128), whereas many of the long-known euryarchaeotes inhabit extreme environments and are therefore restricted to specific geographic areas. The hyperthermophilic, parasitic *Nanoarchaeum equitans*, initially suggested to represent a new candidate phylum (49), likely constitutes an additional fast-evolving lineage of the *Euryarchaeota* (14).

Crenarchaeota contain only one taxonomic class (i.e., *Thermoprotei*) and five taxonomic orders (i.e., *Acidilobales*, *Desulfurococcales*, *Fervidicoccales*, *Sulfolobales*, and *Thermoproteales*), two of which (*Acidilobales* and *Fervidicoccales*) were discovered only recently (100, 106). All crenarchaeotes have been found in hot environments such as acidic terrestrial hot springs and submarine hydrothermal vents, as well as smoldering refuse piles (61).

Few organisms of the recently defined phylum *Thaumarchaeota* have been cultivated (124), all of which gain energy by ammonia oxidation. Organisms of this phylum are globally distributed and are found in high numbers in marine and freshwater environments, soils, and sediments and also occur in extreme environments including hot springs.

On the basis of genomic data, additional archaeal phyla have recently been proposed. They include *Korarchaeota* (5, 29), *Aigarchaeota* (94), and *Geoarchaeota* (67). The affiliation of several deep-branching lineages such as the Miscellaneous Crenarchaeotal Group (MCG), Deep Sea Archaeal Group (DSAG), and Ancient Archaeal Group (AAG) is still unclear (43). Members of these new phyla have been found in the terrestrial and marine subsurface (128) but also in hot springs and deep-sea hydrothermal systems, and no representative has yet been obtained in pure culture.

ARCHAEAL METABOLISMS AND BIOGEOCHEMICAL CYCLES

Archaeal metabolisms sustain the production of the archaeomass and determine the biogeochemical impact of the Archaea. On the basis of cell counts and molecular studies, archaea account for more than 20% of all prokaryotes in ocean waters (56), about 1–5% in upper soil layers (6, 95), and probably represent the dominant group of microorganisms in marine subsurface sediments (76) and in most geothermal habitats. Their involvement in major geochemical cycles is discussed below.

Carbon Cycle

Archaea dominate the biogenic production of methane (CH₄) but are also key to the oxidation of this important hydrocarbon. Archaeal organisms also play significant roles in the production and mineralization of organic matter.

Carbon assimilation. Many cultivated representatives of the *Crenarchaeota*, *Thaumarchaeota*, and *Euryarchaeota* are capable of autotrophic growth (Supplemental Table 1; follow the Supplemental Material link from the Annual Reviews home page at http://www.annualreviews.org), as they assimilate carbon from oxidized inorganic compounds, i.e., carbon dioxide (CO₂) or bicarbonate (HCO₃⁻), reducing those substrates to form simple organic molecules (9) (Figure 2a). Investigation of the genome sequence of “*Candidatus Caldiarchaeum subterraneum*” (94) indicates...
Figure 2
Schematic representation of the involvement of archaea in (a) carbon, (b) nitrogen, and (c) sulfur cycles. Red arrows indicate metabolic steps found in archaea and bacteria; orange arrows indicate metabolic pathways present exclusively in archaea; and gray arrows indicate metabolisms known only from bacteria. Circled numbers can be defined as follows: 1, hydrogenotrophic methanogenesis is a lithotrophic process resulting from the reduction of CO$_2$ with H$_2$ as electron donor; 2, formotrophic, acetotrophic, and methylotrophic methanogenesis are organotrophic processes supported by the degradation of formate, acetate, and methylated compounds, respectively; 3, nitrifier denitrification is thought to occur under low oxygen conditions; 4, N$_2$O might be a direct side product of the ammonia-oxidizing pathway; 5, S$_2$O$_3^{2-}$ is produced in several different ways including abiotic processes not presented here.

that members of the Aigarchaeota might also be able to assimilate inorganic carbon. Three different metabolic pathways for autotrophic carbon fixation have been characterized in cultivated archael autotrophs, and these were reviewed recently (9).

Many autotrophic members of the Archaea grow mixotrophically; i.e., they coassimilate small organic compounds under suitable conditions or switch between an autotrophic and a heterotrophic lifestyle (61). Whereas _Thaumarchaeota_ as described thus far depend on inorganic
energy sources

electron donors and
organic compounds as
organism that uses
Chemoorganotroph:
methanotroph
anaerobic
ANME: consortium
a complex microbial
active organisms inside
to detect metabolically
environmental sample
given to an
isotope (e.g., 13C) is
enriched in a stable
probing (SIP):
environmental study
Conservation
Methanogenesis.
Methane, a major greenhouse gas but also an important source of energy for human, is the predominant hydrocarbon in Earth’s atmosphere. Methanogenic archaea are strict anaerobes that produce methane (CH₄) as the major product of their energy-conserving metabolism (Figure 2a). All methanogenic archaea characterized so far belong to the Euryarchaeota (Supplemental Table 1) and are distributed among five taxonomic classes, i.e., Methanopyri, Methanococci, Methanobacteria, Methanomicrobia, and Thermoplasmata (26, 79, 98).

Several methanogenic pathways that rely on various substrates have been described (Figure 2a and Supplemental Table 1): CO₂ reduction with hydrogen (hydrogenotrophic methanogens) or formate (formatotrophic methanogens) as electron donors; methanol reduction with hydrogen; fermentation of acetate (acetotrophic methanogens); and dismutation of methylated compounds.

Stable isotopes probing (SIP): a substrate highly enriched in a stable isotope (e.g., ¹³C) is given to an environmental sample to detect metabolically active organisms inside a complex microbial consortium
ANME: anaerobic methanotroph
Chemoorganotroph: organism that uses organic compounds as electron donors and energy sources

Organic carbon mineralization. The catabolic degradation of organic substrates by chemoorganotrophs usually results in the production of CO₂ as the main end product (Figure 2a). However, the absence of external electron acceptors (fermentative conditions) or a limitation in respiratory capacity is associated with the excretion of partially oxidized compounds, e.g., organic acids or alcohols, in addition to CO₂. Numerous archaeal organisms, including aerobes and anaerobes, can grow organotrophically (see below for a discussion of organotrophic methanogens and methane-oxidizing archaea). Those organisms that have been cultivated thus far are extremophiles, which belong to the Euryarchaeota and Crenarchaeota (Supplemental Table 1). A comprehensive description of the various organotrophic metabolisms supporting cultivated archaeal organisms can be found in Reference 61. On the basis of the genome sequence of uncultivated extremophilic archaea, representatives of the Korarchaeota, Geoarchaeota, Aigarchaeota, the provisional euryarchaeal class Nanoarchaeota, and ARMAN lineages might also grow organotrophically (4, 29, 37, 67, 93, 94). Recent metagenomic studies suggest that euryarchaeal phototrophic methanotroph (ANME) lineages are also autotrophs (59).

Methanogenesis. Methane, a major greenhouse gas but also an important source of energy for humans, is the predominant hydrocarbon in Earth’s atmosphere. Methanogenic archaea are strict anaerobes that produce methane (CH₄) as the major product of their energy-conserving metabolism (Figure 2a). All methanogenic archaea characterized so far belong to the Euryarchaeota (Supplemental Table 1) and are distributed among five taxonomic classes, i.e., Methanopyri, Methanococci, Methanobacteria, Methanomicrobia, and Thermoplasmata (26, 79, 98).

Several methanogenic pathways that rely on various substrates have been described (Figure 2a and Supplemental Table 1): CO₂ reduction with hydrogen (hydrogenotrophic methanogens) or formate (formatotrophic methanogens) as electron donors; methanol reduction with hydrogen; fermentation of acetate (acetotrophic methanogens); and dismutation of methylated compounds.
Syntrophic partnerships: electron transfers between two organisms enabling growth on otherwise thermodynamically unfavorable reactions

(methylotrophic methanogens) such as methanol, methylamines, dimethylsulfide (DMS), or methanethiol (33, 79). Whereas most cultivated methanogens reduce CO₂ with hydrogen, only members of Methanosarcinales have the ability to produce methane from the fermentation of acetate and the dismutation of methylated compounds. The recently discovered methanogenic Thermoplasmata reduce methanol with hydrogen (26, 98) and might also use methylamines as methanogenic substrate (104). Currently, none of these methanogenic metabolisms have been found in bacteria or eukaryotes. Although acetate fermentation is performed by only a few cultivated methanogens, this process could account for up to two-thirds of the methane released to the atmosphere by archaean methanogenesis; the reduction of CO₂ accounts for the rest of the archaean contribution to atmospheric methane, with minor amounts of methane produced by the dismutation of methyl compounds (33).

Methanogens have been isolated from various anoxic environments (20, 79) (e.g., rice paddies and peat bogs; freshwater, marine, and hypersaline sediments; hydrothermal vents; deep-subsurface habitats; the gastrointestinal tract of various animals) and are usually abundant where electron acceptors such as NO₃⁻, Fe³⁺, and SO₄²⁻ are in short supply. Hydrogenotrophic methanogens and acetogenic bacteria have similar requirements, including anoxic conditions, a source of H₂ as electron donor, and a source of CO₂ as electron acceptor (Figure 2a). But methanogenesis occurs preferentially at low H₂ concentrations and at a pH lower than 7; it can also be performed at high temperatures (2, 65, 130). Interestingly, methanogenic archaea have also been found inoxic environments, i.e., various aerated soils (3, 102) and the oxygenated water column of an oligotrophic lake (40). The methanogens in aerated soils became active under wet anoxic conditions (3), and those in oxygenated lake waters were attached to photoautotrophs, which might enable anaerobic growth and supply of methanogenic substrates (40). Several other processes, such as the microbial decomposition of methylphosphonate (55, 88), could be responsible for methane production in oxygenated waters (60), and fungi (74) and plants (15) are possible sources of methane in aerated soils. The global significance of these alternative aerobic methanogenic pathways remains to be assessed.

Archaean methanogenesis produces about 1 Gt of methane every year (111, 130) and accounts for a significant fraction of the net annual emissions of methane to the atmosphere, with some estimates as high as 74% (79). Methanogenic archaea also produce methane that stays locked in underground reservoirs by taking part in the biodegradation of crude oil (52) and coal (126). Methane production by methanogenic archaea is suspected to rise considerably in arctic soils because of climate warming and is thus a major focus of current arctic research (82).

Methanogenic syntrophies. Methanogenic archaea engage in various syntrophic partnerships (121) that involve the transfer of electrons from a fermentative organism to the methanogen via a carrier molecule, such as H₂ or acetate. The methanogens use the carrier molecule as electron donor for energy conservation, and the fermentative organism gains energy from the redox reaction that produces the electron carrier only if the methanogens oxidize the carrier molecule, keeping the carrier at a low concentration. Methanogens might also receive electrons directly (121) via conductive pili or nanowires (112) or across conductive iron-oxide minerals (58). Syntrophic interactions enable methanogenesis when methanogenic substrates are limiting, and their establishment can also lead to increased methane production rates (58, 120). The global biogeochemical impact of syntrophic interactions involving methanogenic Euryarchaeota is considerable as they enable the complete degradation of complex organic molecules to carbon dioxide and methane in methanogenic habitats (121). Acetotrophic methanogens can also produce hydrogen and support the hydrogen-dependent dechlorination of xenobiotic compounds by dehalorespiring
Microorganisms (46), further broadening the biogeochemical significance of interactions involving methanogenic archaea.

Methane oxidation. Methanogenic archaea are a major source of CH₄ emissions, but some of their closest relatives in turn play a critical role in controlling these emissions by oxidizing CH₄ back to CO₂ (Figure 2a). Methane-oxidizing archaea, also called methanotrophic archaea, are strict anaerobes that gain energy by coupling the oxidation of methane to the reduction of sulfate (SO₄²⁻) (129, 131). These organisms belong to the Euryarchaeota and all are representatives of a single taxonomic class, the *Methanomicrobia*, along with various methanogenic archaea. The 16S rRNA gene sequences of the euryarchaeal ANMEs determine three sequence clusters, namely ANME-1, ANME-2, and ANME-3 (Supplemental Table 1), which are distantly related to each other (16S sequence similarity of 75–92%) and do not form a monophyletic lineage (63). Representatives of the ANME lineages have not been obtained in pure culture; therefore, their taxonomy has not been formally established. These archaea often, but not always, form microbial consortia with sulfate-reducing *Deltaproteobacteria* (reviewed in 63), which led to the suggestion that the sulfate-dependent anaerobic oxidation of methane (AOM) is a syntrophic process. The very low energy yield of this metabolism, however, led researchers to question the viability of these putative syntrophies (129, 131), and a recent breakthrough study (89) showed that ANME-2 organisms alone perform AOM coupled to dissimilatory sulfate reduction (see Sulfidogenesis, below). No other organism, bacterial or eukaryotic, is known to perform a similar process.

The environmental distribution of ANME organisms has been reviewed extensively by Knittel & Boetius (63), and a short account of their report is presented here. Methanotrophic archaea thrive in anoxic environments where both methane and sulfate are present, which often occurs in marine benthic systems. Accordingly, ANME organisms are widely distributed in methane seep ecosystems as well as in marine sediments, where their habitat is restricted to the sulfate-methane transition zone. The abundance of methanotrophic archaea often mirrors the rates of anaerobic methane oxidation measured in those habitats; i.e., dense populations (up to densities greater than 10¹⁰ cells cm⁻³) are found at methane seeps, hotspots of AOM, and small populations (<10⁶ cells cm⁻³) occur in marine sediments, where process rates are lower. Methane-oxidizing archaea have also been detected in anoxic water columns, hydrothermal vents, soils, aquifers, and freshwater habitats, the physicochemical settings of which differ widely, further indicating that archaeal methanotrophs are physiologically diverse. The habitat ranges of the ANME-1, ANME-2, and ANME-3 lineages are not identical. ANME-1 and ANME-2 are globally distributed and present in similar environments, but one of these two groups usually dominates at a specific geographic location. ANME-3 organisms are essentially present at submarine mud volcanoes sites. The physiological and metabolic bases of these differences, if any, are not clear.

Iron (as ferrihydrite) and manganese (as birnessite) are alternative electron acceptors suitable for AOM, and there is evidence that these processes may occur in marine sediments where SO₄²⁻-dependent AOM may also take place (7). The potential rate of SO₄²⁻-driven AOM was reported to be 4 and 10 times as fast as birnessite- and ferrihydrite-dependent AOM in Eel River Basin sediments, respectively, but the global co-occurrence of these processes, their relative contribution to in situ rates of AOM, and the identity of the microorganisms responsible for the iron- and manganese-dependent processes remain to be determined. AOM can also be coupled in a fundamentally different biochemical pathway to the denitrification from nitrite (NO₂⁻), a process occurring in freshwater habitats (31, 145) and performed by recently discovered bacteria belonging to the NC10 candidate division (30), but there is no indication that NO₂⁻- and SO₄²⁻-driven AOM can occur in the same environment (see, e.g., 25).
AOM exerts a strong control over ocean CH₄ emissions, which account for only 2% of the CH₄ released to the atmosphere. Global estimates of the rate of AOM in oceanic environments suggest that a large fraction (>50%) of the gross annual production of CH₄ in marine systems is consumed by anaerobic methanotrophs before CH₄ is even released to ocean waters (111). The AOM in marine sediments has been attributed to the CH₄-oxidizing activity of ANME archaea, but other microorganisms may be involved (7) and their identity and contribution to the global CH₄ budget need to be determined. There are, however, some uncertainties about the ability of ANME archaea to respond to a potential increase in ocean methane production, which could result from an accelerated melting of the massive reservoir of methane hydrates present in the seabed (13).

Carbonate precipitation. Anaerobic methanotrophic archaea promote the precipitation of carbonates from the inorganic carbon dissolved in the sediment pore water by locally increasing the alkalinity and inorganic carbon concentration of the water (16, 134). Because carbonates are relatively stable in sediments, their formation results in the long-term storage of carbon in the lithosphere. The carbon of carbonate rocks is re-emitted to the atmosphere only slowly over geological timescales through volcanism associated with tectonic plate subductions, which is part of the long-term carbon cycle (10). Anaerobic methane-oxidizing archaea buffer the global climatic impact of marine CH₄ production not only by oxidizing CH₄ to CO₂ but also by transferring to the lithosphere some of the carbon cycled on a short timescale by living organisms.

Nitrogen Cycle

Archaea are central to the oxidation of ammonia (NH₃) to nitrite (NO₂⁻) but are also involved in the fixation of dinitrogen (N₂) gas and denitrification process. The mineralization of organic nitrogen compounds by archaeal organotrophs is not discussed.

Nitrogen fixation. Most organisms, including the great majority of archaea, assimilate nitrogen either from inorganic nitrogen sources, such as NH₃ and nitrate (NO₃⁻), or from nitrogen-containing organic compounds (17). These organic and inorganic nitrogen sources, however, are in short supply within the biosphere, and the maintenance of most life forms is dependent on processes that continuously produce suitable nitrogen compounds from the large reservoir of N₂ in the atmosphere. The atmospheric nitrogen enters the food chain essentially via a biogeochemical process called nitrogen fixation, which consists of the reduction of N₂ to NH₃ (Figure 2b). This process is performed naturally by a number of bacterial and archaeal microorganisms, but the industrial fixation of nitrogen through the Haber-Bosch process produces similarly large quantities of ammonia used as fertilizers in agriculture, which is currently strongly disturbing the nitrogen cycle (19, 41).

The ability to fix N₂ gas, or diazotrophy, is a widespread feature of methanogenic archaea and is also present in anaerobic methane-oxidizing euryarchaea (Supplemental Table 1), but is expressed only in the absence of other nitrogen sources as for bacterial nitrogen fixers (17, 22, 72). Diazotrophic methanogens belong to three major taxonomic classes, i.e., *Methanobacteria*, *Methanococci*, and *Methanomicrobia* (Supplemental Table 1), and have been isolated from various environments (17, 72, 87), suggesting a widespread occurrence in anoxic habitats (Figure 2b). Diazotrophic methanotrophs belong to the ANME-2 lineage (22, 101) and are known only from methane seep sediments. Cultivation experiments have shown that methanotrophic diazotrophs not only fix but also share nitrogen with bacterial partners in AOM consortia (22). The prevalence of in situ diazotrophic growth by methanogenic and methanotrophic archaea, however, is
Lithoautotrophic: describes an organism that uses inorganic compounds as energy sources and fixes carbon from inorganic compounds

AOA: ammonium-oxidizing archaea

Nitrogen transformation processes are key to the cycling of nitrogen in the environment. The majority of ammonia, or ammonium, is converted to nitrite and then to nitrate, a process known as nitrification. This process occurs in two steps: the oxidation of ammonia to nitrite, followed by the oxidation of nitrite to nitrate. Each step is catalyzed by different guilds of microorganisms, namely the ammonia oxidizers, which include both bacteria and archaea, and the nitrite oxidizers, which are always bacteria.

Ammonia-oxidizing archaea (AOA) are a diverse group of ancient archaea that oxidize ammonia to nitrite, primarily in volcanic areas, coastal sediments, and freshwater environments. These archaea play a significant role in global nitrogen cycling, especially in environments where oxygen is limited or absent. They also contribute to the denitrification process, where nitrate is reduced to nitrogen gas, which is lost to the atmosphere. AOA are known for their ability to oxidize ammonia even in the presence of high ammonium concentrations, making them important for nitrogen fixation in natural and anthropogenic systems.

Nitrification. Not only is ammonia taken up by most organisms and immobilized in their biomass, it is also oxidized to NO$_3^-$ in oxic environments via the nitrification process (Figure 2b), which consists of two steps, i.e., the oxidation of NH$_3$ to NO$_2^-$ and its further conversion to NO$_3^-$. Each step is catalyzed by different guilds of microorganisms, namely the ammonia and nitrite oxidizers, respectively. Until recently, it was assumed that only lithotrophic bacteria (66) and, to a limited extent, heterotrophic microorganisms (125) are involved in nitrification. The discovery that lithoautotrophic archaea thriving in oxic and moderate habitats have the capacity to oxidize NH$_3$ to NO$_2^-$ (64, 133) was unexpected, and their high numbers in marine and freshwaters, soils and surface sediments, and thermally heated environments suggest a prominent role in global nitrogen cycling (73, 118, 139).

A handful of ammonia-oxidizing archaea (AOA), all belonging to *Thaumarchaeota* (Supplemental Table 1), have been obtained in pure culture or enrichments. They stem from marine and continental habitats and are assigned to four different thaumarcheal lineages: group 1.1a, group 1.1a associated, group 1.1b, and ThAOA/HWCG III (for a recent review, see 124). Physiological studies have recently shown that the ammonia-oxidizing soil thaumarcheon “Candidatus Nitrososphaera viennensis” (132) is able to grow on urea as an alternative source of NH$_3$ (Supplemental Table 1), and there is evidence suggesting that urea is an important substrate for archaeal ammonia oxidation in polar waters (1). Furthermore, analysis of the “Candidatus Nitrososphaera gargensis” genome indicated that cyanate (OCN$^-$) might be used as substrate for archaeal ammonia oxidation (123) (Supplemental Table 1). However, thaumarcheal relatives of cultivated AOA might not always grow by oxidizing NH$_3$ (91) or they might use different electron acceptors (54, 128).

The relative contribution of archaeal and bacterial ammonia oxidizers to the NH$_3$ oxidation process is uncertain, and their respective ecological niches have been discussed (107). Cultivated AOA are characterized by a low tolerance to high NH$_3$ concentrations, and the highest growth inhibitory concentration reported for an AOA, i.e., 20 mM NH$_4^+$ (pH 7.5) for “Ca. N. viennensis” (132), is similar to the lowest inhibitory concentration reported for an ammonia-oxidizing bacterium (AOB), i.e., 21.4 mM NH$_4^+$ for the JL21 strain (127). However, according to very few studies, AOA also have lower substrate threshold and half-saturation constant (K_m) for ammonium uptake than AOB (85, 107). Together these data suggest that AOA outcompete AOB at low substrate concentrations, such as those in ocean waters, where AOA might be responsible for most of the ammonia oxidation (85). Microcosm experiments indicate that AOA can also play a major role in soil NH$_3$ oxidation (42, 97), even in fertilized soils (116, 135), which could be explained by an uneven distribution of fertilizer in the soil pore space, defining a mosaic of high- and low-ammonia niches. Other studies have also indicated that archaeal ammonia oxidation in soils might be fueled by the mineralization of organic nitrogen compounds (75), suggesting interactions with ammonifying microorganisms. Furthermore, AOA seem to be responsible for most of the ammonia oxidation in some acidic soils (42, 81, 143), and the first acidophilic ammonia oxidizer, the thaumarcheon “Candidatus Nitrosotalea devanaterra,” was cultivated only recently (71).

Ammonia oxidation is the rate-limiting step of the nitrification process and supports the oxidation of NO$_2^-$ to NO$_3^-$ (Figure 2b) by nitrite-oxidizing bacteria (NOB), but the nature of the interactions between AOA and NOB is still unclear. In the marine environment, especially in oxygen minimum zones, AOA might also support the anaerobic oxidation of NH$_4^+$ with NO$_2^-$ (anammox) (Figure 2b) by supplying nitrite and consuming oxygen (69, 141).

Nitrification has a global impact on the form of inorganic nitrogen (NH$_3$ or NO$_3^-$) available in ecosystems. The assimilation of NO$_3^-$ has a higher energetic cost than that of NH$_3$ because
Hyperthermophiles: organisms with optimal growth temperature at or above 80°C

Nitrate is first reduced to NH₃ before assimilation. Nevertheless, NO₃⁻ is a primary nitrogen source for many phototrophs such as phytoplankton and crops. In soils, nitrification is also responsible for losses of nitrogen (including nitrogen fertilizers), as NO₃⁻ and NO₂⁻ are easily leached to groundwater. High nitrification activity supported by heavy fertilization of agricultural soils may then cause groundwater pollution and ecosystem eutrophication at groundwater resurgence points.

Denitrification. The existence of processes regenerating atmospheric N₂ gas from oxidized inorganic nitrogen compounds, i.e., NO₂⁻ and NO₃⁻, is essential for the long-term survival of continental ecosystems, as all earth nitrogen would otherwise accumulate in the ocean due to ongoing nitrification activity. Dinitrogen production occurs mainly via two processes (Figure 2b), namely denitrification (17, 146) and the anaerobic oxidation of NH₄⁺ with NO₂⁻ (anammox) (57). The relative contribution of these two processes on a global scale remains unclear. The anammox is performed solely by bacteria and is not further discussed. Denitrification is a form of anaerobic respiration that uses NO₃⁻ or NO₂⁻ as electron acceptor and results in the sequential formation of gaseous nitrogen compounds, i.e., nitric oxide (NO), nitrous oxide (N₂O), and/or N₂. The process does not always produce N₂ as final product, which can lead to the release of significant amounts of NO, a major ozone-depleting substance, and N₂O, a potent greenhouse gas and source of NO (109). Denitrification occurs in many environments including soils, oceans, and freshwater and is usually performed by facultative anaerobes growing under microaerophilic or anoxic conditions (146). Denitrifiers include various bacteria, some archaea, and even eukaryotes (17, 146).

Only a few cultivated archaea are capable of denitrification (Supplemental Table 1). The prevalence of this metabolism in the archaeal domain and the biogeochemical significance of archaeal denitrification have been little investigated. All denitrifying archaea characterized thus far are either organotrophic halophiles or lithoautotrophic (facultative or obligate) hyperthermophiles using NO₃⁻ as electron acceptor (12, 44, 83, 136). The exception is Pyrobaculum aerophilum, which accepts both NO₃⁻ and NO₂⁻ (136). Archaeal denitrifiers produce various mixtures of NO₂⁻, NO, N₂O, and N₂, and Pyrolobus fumarii releases NH₄⁺ in a biochemically unrelated process called nitrate ammonification (12). A metagenomic analysis suggested that the uncultivated archaeon “Ca. C. subterraneum” might also be able to use NO₃⁻ as electron acceptor (94).

The ammonia-oxidizing thaumarchaeon “Candidatus Nitrosopumilus maritimus” and thaumarchaeal enrichment cultures obtained from pelagic waters were shown to produce N₂O (80, 115) (Supplemental Table 1), and the comparison of the isotopic signature of the N₂O emitted by cultures and ocean waters indicated that AOA could account for most of the oceanic production of this greenhouse gas (115), which represents up to 30% of the worldwide emissions of N₂O to the atmosphere. Whether this finding represents a form of nitrifier denitrification as performed by AOB (119) remains unclear, and the biochemical basis of this process has not been determined.

Sulfur Cycle

Archaea influence the cycling of sulfur through a variety of processes, which result in the production or the oxidation of sulfidic compounds.

Sulfidogenesis. Sulfidogenesis describes the production of hydrogen sulfide (H₂S), a by-product of the metabolism of various facultative and obligate anaerobes, including many archaea. Hydrogen sulfide is also a component of volcanic exhalations, particularly in hydrothermal fields and submarine vents (62). Although sulfidogenesis is a major biogeochemical process, H₂S is a reactive molecule and therefore does not always accumulate in environments where it is produced. It can react with metal ions to form metal sulfides; be oxidized in air, resulting in sulfur deposition; or
be used as electron donor by various microorganisms (see Sulfide Oxidation, below). Cultivated archaeal sulfidogens belong to **Euryarchaeota** and **Crenarchaeota** (Supplemental Table 1), and there is no indication that members of other archaeal phyla release H\textsubscript{2}S as a main product of their metabolism. Archaeal sulfidogens produce H\textsubscript{2}S essentially by the dissipilatory reduction of elemental sulfur (S0, most often present as S\textsubscript{2}), sulfite (SO\textsubscript{4}2-), thiosulfate (S\textsubscript{2}O\textsubscript{3}2-), or sulfate (SO\textsubscript{4}2-).

The ability to use elemental sulfur as electron acceptor (Figure 2c) is widespread, though not universal, in cultivated representatives of the hyperthermophilic **Crenarchaeota** as well as in those of **Thermococci** and **Thermoplasmata** (Euryarchaeota) (62, 78, 113). Elemental sulfur may be either respired with H\textsubscript{2} or organic compounds as electron donors, as performed by various members of **Crenarchaeota** and **Thermoplasmata**, or used as electron sinks in fermentation processes carried out by many **Thermococci** and some representatives of **Desulfurococcales** (Supplemental Table 1). Some methanogenic archaea, e.g., *Methanopyrus* and *Methanobacterium*, produce significant quantities of H\textsubscript{2}S when grown with elemental sulfur but do not conserve energy from the reaction (77, 78).

All sulfur-reducing archaea, with the exception of H\textsubscript{2}S-producing mesophilic methanogens, are (hyper)thermophiles thriving in geothermal environments, high-temperature oil reservoirs (38, 84), and coal beds (126), and they are even associated with deep-sea animals (48). Several bacteria are able to reduce elemental sulfur to H\textsubscript{2}S, including members of the **Deltaproteobacteria** and **Epsilonproteobacteria**, which are present, for example, in marine and freshwater sediments, continental hot springs, deep-sea hydrothermal vents, and subsurface environments (18, 92). Archaeal and bacterial sulfur reducers therefore can inhabit similar environments, although archaea prevail at higher temperature, lower pH, and in more reducing conditions. The global rate of elemental sulfur reduction to H\textsubscript{2}S and the relative contribution of archael and bacterial organisms to this process have not been assessed, and the impact of sulfur-reducing archaea on the functioning of microbial communities remains largely unknown.

Cultivated archaea able to perform the dissimilatory reduction of SO\textsubscript{4}2- to H\textsubscript{2}S (Figure 2c) belong to only three genera: *Archaeoglobus* (Euryarchaeota), *Caldicivirga* (Crenarchaeota), and *Thermodadium* (Crenarchaeota) (Supplemental Table 1). *Archaeoglobus* spp. use H\textsubscript{2} as electron donors and, in some instances, simple organic acids, while *Caldicivirga* spp. and *Thermodadium* spp. use complex organic substrates (62, 78). Thiosulfate (S\textsubscript{2}O\textsubscript{3}2-) can also be used as electron acceptor by members of all three genera and SO\textsubscript{4}2- by *Archaeoglobus* spp. (Figure 2c and Supplemental Table 1). A few additional genera belonging to *Archaeoglobi*, *Desulfurococcales*, and *Thermoproteales* can also respire SO\textsubscript{4}2- and/or S\textsubscript{2}O\textsubscript{3}2- (Supplemental Table 1). Whereas all these organisms are hyperthermophiles, bacterial sulfate reducers form an abundant and diverse group of microorganisms that occurs in a broad range of anoxic habitats and may account for most of the global biogenic H\textsubscript{2}S production (92). Nevertheless, *Archaeoglobus* spp. thrive in high-temperature oil reservoirs (8, 38), where they may contribute to crude oil souring, which has detrimental impacts on the cost and safety of oil exploitation and its market value.

A new perspective on the contribution of archael organisms to dissimilatory sulfate reduction and sulfidogenesis has emerged from research showing that ANME-2 archaea (see Methane Oxidation, above) use sulfate as electron acceptor, reducing it to zero valent sulfur, possibly in the form of disulfide (HS-) (Figure 2c and Supplemental Table 1), a completely new process in the sulfur cycle (89). The authors suggest that bisulfide (HS-, i.e., dissociated H\textsubscript{2}S) is produced from the dismutation of HS\textsubscript{2} (Figure 2c), also a new process, performed by **Deltaproteobacteria** often growing in consortia with ANME archaea, and that bisulfide could also be produced, to some extent, directly by the archael methanotroph. These processes, if proven to be general features of ANME archaea, including ANME-1 and ANME-3 lineages, and associated **Deltaproteobacteria**, imply that archaea could have a significant role in the dissimilatory reduction of sulfate and in the biogenesis of sedimentary metal sulfides, and will also force a revision of our view of carbon
and sulfur cycling in marine sediments. Although the final products of sulfate reduction in deep marine sediments are metal sulfides, essentially pyrite (FeS$_2$), the production of H$_2$S/HS$^-$ from AOM at methane seeps occurs in near-surface sediments and supports entire ecosystems, including macrofauna, that are based on the lithoautotrophic oxidation of H$_2$S (53).

Dimethylsulfide (DMS), a volatile organic sulfide (thioether), is another important intermediate in the sulfur cycle. DMS is biogenically produced and released in significant amounts to the atmosphere from aquatic environments. Processes controlling the production of DMS in marine surface waters have received special attention owing to the potential effect of DMS on cloud formation and global climate (21, 70, 108). Various archaeal organisms have the ability to produce but also oxidize DMS (for DMS oxidation, see Methanogenesis, above). All DMS-producing archaea belong to the Euryarchaeota (Supplemental Table 1), including representatives of Halobacteria (78, 90) and possibly members of the uncultivated Marine group II (86). Halobacteria produce DMS via the dissimilatory reduction of dimethylsulfoxide (DMSO) as a form of anaerobic respiration (78, 90), and representatives of Marine group II, widespread in ocean waters, might have a similar ability (86). DMSO is abundant in aquatic environments and could act as an important precursor to the production of DMS (70), but the significance of archaeal DMSO reduction remains to be clarified.

Sulfide oxidation. A number of acidophilic archaea (and bacteria) are able to oxidize sulfide minerals (Figure 2c) such as pyrite (FeS$_2$), marcasite (FeS$_2$), and chalcopyrite (CuFeS$_2$) (28, 39, 110). The oxidation of these metal sulfides can result from the direct enzymatic attack of the mineral surface (110), in which case the sulfide compound constitutes the source of electrons and energy of the oxidizing microorganism. However, microorganisms can oxidize metal sulfides indirectly via the production of an oxidant, i.e., Fe$^{3+}$, which is generated from the bio-oxidation of Fe$^{2+}$ ions dissolved in the water surrounding the mineral particle (110). Archaeal organisms able to oxidize sulfide minerals belong to Sulfolobales (Crenarchaeota) and Thermoplasmatales (Euryarchaeota) (Supplemental Table 1). These organisms and their bacterial counterparts have been found in geothermal environments and mining areas and are thought to pervade in sulfide ore deposits (39, 110). Crenarchaeotes often have the ability to oxidize elemental sulfur (Figure 2c and Supplemental Table 1), like many bacterial sulfide oxidizers, but grow only at high (>65°C) temperatures, whereas Thermoplasmatales (euryarchaeotes) include mesophiles that can withstand extreme acidity (pH 0). The exposure of sulfide minerals to moisture and air at mining sites results in increased rates of metal sulfide bio-oxidation, which lead to the production of significant amounts of sulfuric acid, causing serious environmental pollution in the form of acid mine drainage. The relative contributions of bacterial and archaeal organisms to metal sulfide oxidation are unclear, but archaeal organisms can dominate acid mine drainage communities and have an important role in pyrite oxidation (27). Furthermore, bioreactor experiments have shown that archaeal organisms can be more efficient than bacteria in solubilizing sulfide minerals (110, 114), which points to the importance of archaeal organisms for the biomining industry.

Although H$_2$S often reacts with metal ions to form insoluble metal sulfides, H$_2$S can accumulate in significant amounts in a number of environments (e.g., Black Sea, meromictic lakes, swamps, solfataras). Despite its toxicity toward most living organisms, H$_2$S supports the growth of many bacteria and few hyperthermophilic archaea (Figure 2c) by serving as electron donor and energy source. Archaeal H$_2$S oxidizers (Supplemental Table 1) are poorly characterized and include representatives of only two genera: Acidianus (103) and Ferroglobus (44). Growth on H$_2$S occurs anaerobically with Fe$^{3+}$ and NO$_3^-$ as electron acceptors. Some Acidianus strains are also able to grow on carbon disulfide (CS$_2$), a component of volcanic exhalations, by enzymatically converting CS$_2$ to H$_2$S (122). In contrast, diverse H$_2$S-oxidizing bacteria are known, including phototrophs,
chemotrophs, aerobes, anaerobes, autotrophs, and heterotrophs, which are thought to play a significant role in the formation of biogenic sulfur deposits (28).

CONCLUSIONS AND PERSPECTIVES

Archaea have taken center stage in modern ecology and biogeochemistry research, although they were long seen as an assemblage of extremophilic organisms without a major role in the Earth system. Archaea are now recognized to have important roles in global biogeochemical cycles while being diverse and truly ubiquitous in the biosphere. At least two metabolisms essential for global nutrient cycling are carried out exclusively by archaea: methanogenesis and sulfate-dependent anaerobic methane oxidation. The third archaeal metabolism of global importance is aerobic ammonia oxidation. Although both archaea and bacteria contribute to this process and their metabolic and ecological differences need to be clarified, the wide distribution of ammonia-oxidizing archaea in virtually all investigated aerobic habitats indicates a prominent role for these organisms. A full appreciation of the contribution of Archaea to Earth’s biogeochemistry still lies far ahead, and a minimum of two fundamental issues need to be addressed: the inventory of all biogeochemical processes carried out by archaeal organisms and the quantification of archaeal biomass, production, and nutrient cycling activities in natural environments.

Characterization of the physiology and metabolism of uncultivated archaea is likely to identify new players of known biogeochemical processes but might also reveal novel nutrient cycling activities. Besides metagenomic studies and single-cell genomics, distribution patterns of microbial groups across physicochemical gradients have been used to raise hypotheses about biogeochemical reactions performed by currently uncultivated archaean lineages (54). This approach led, for example, to the suggestion that representatives of DSAG could be heterotrophs using ferric iron (Fe$^{3+}$) as electron acceptor (11, 54). Such hypotheses, however, need to be experimentally tested in order to ascertain the biogeochemical function of these organisms. Furthermore, the full appreciation of the biogeochemical impact of an organism can only be achieved by taking into account the whole set of its metabolic pathways. For example, the recent discovery of a pathway for methylphosphonate biosynthesis in *Ca. Nitrosopumilus maritimus* (88) illustrated that this ammonia-oxidizing thaumarchaeon is not only involved in the nitrogen cycle but also takes part in the redox cycling of phosphorus, a poorly characterized component of the global phosphorus cycle.

A better understanding of the biogeochemical function of the Archaea will also emerge from progress in our ability to predict and measure biogeochemical fluxes resulting from the metabolic activities of archaeal organisms in their natural environment. This requires tackling the intricate nature of microbial communities to decipher archaean signatures within a multitude of overlapping processes. Two opposite and complementary paths, i.e., systems ecology and synthetic ecology, also called top-down and bottom-up approaches, respectively, are currently being developed to characterize microbial metabolism on a community-wide scale (142).

SUMMARY POINTS

1. Archaea have evolved a number of energy metabolisms using inorganic and organic electron donors and acceptors.
2. Like bacteria, archaea play crucial roles in biogeochemical cycles, particularly the carbon and nitrogen cycles.
3. Methanogenesis and anaerobic methane oxidation are two processes of global importance that are performed exclusively by archaea.
4. Ammonia oxidation, the first step of nitrification, is performed by aerobic *Thaumarchaeota*, as well as by some bacterial lineages.

5. *Thaumarchaeota* represent one of the largest populations in oceanic plankton; they also occur in high numbers in terrestrial environments.

6. Sulfate reduction to disulfide as performed by ANME organisms may have a large impact on ocean seafloor sulfur cycling.

7. Leaching of metal sulfide by extreme acidophilic archaea in acidic coal mines contributes to the formation of acid mine drainage but may also help recover commercially important metals from sulfide ores.

8. Molecular techniques in addition to classical physiological characterization of isolated strains are indispensable for estimating the role of archaea in geochemical cycles.

DISCLOSURE STATEMENT
The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS
We would like to thank Tim Urich and Jim Prosser for critically reading the manuscript. During the preparation of this review, P.O. was supported by a research grant (09-EuroEEFG-FP-034) from the European Science Foundation.

LITERATURE CITED

30. First evidence for nitrite-dependent anaerobic methane oxidation.

40. Suggests methanogens are active in anaerobic microniches within the oxic water column of a lake.

88. Proves that thaumarchaeal representatives produce methylphosphonate, a substrate for aerobic methanogenesis in the ocean.

89. Shows that ANME-2 organisms alone couple the AOM with the reduction of sulfate to disulfide.

Contents

Fifty Years Fused to Lac
Jonathan Beckwith ... 1

3' Cap-Independent Translation Enhancers of Plant Viruses
Anne E. Simon and W. Allen Miller .. 21

Acyl-Homoserine Lactone Quorum Sensing: From Evolution to Application

Mechanisms of Acid Resistance in *Escherichia coli*
Usheer Kanjee and Walid A. Houry ... 65

The Biology of the PmrA/PmrB Two-Component System: The Major Regulator of Lipopolysaccharide Modifications
H. Deborah Chen and Eduardo A. Groisman 83

Transcription Regulation at the Core: Similarities Among Bacterial, Archaeal, and Eukaryotic RNA Polymerases
Kimberly B. Decker and Deborah M. Hinton 113

Bacterial Responses to Reactive Chlorine Species
Michael J. Gray, Wei-Yun Wholey, and Ursula Jakob 141

It Takes a Village: Ecological and Fitness Impacts of Multipartite Mutualism
Elizabeth A. Hussa and Heidi Goodrich-Blair 161

Electrophysiology of Bacteria
Anne H. Delcour ... 179

Microbial Contributions to Phosphorus Cycling in Eutrophic Lakes and Wastewater
Katherine D. McEwan and Emily K. Read 199

Structure and Operation of Bacterial Tripartite Pumps
Philip Hinchliffe, Martyn F. Symmons, Colin Hughes, and Vassilis Koronakis 221

Plasmodium Nesting: Remaking the Erythrocyte from the Inside Out
Justin A. Boddey and Alan F. Cowman .. 243
The Algal Past and Parasite Present of the Apicoplast
Giel G. van Dooren and Boris Striepen .. 271

Hypoxia and Gene Expression in Eukaryotic Microbes
Geraldine Butler ... 291

Wall Teichoic Acids of Gram-Positive Bacteria
Stephanie Brown, John P. Santa Maria Jr., and Suzanne Walker 313

Archaeal Biofilms: The Great Unexplored
Alvaro Orell, Sabrina Fröls, and Sonja-Verena Albers 337

An Inquiry into the Molecular Basis of HSV Latency and Reactivation
Bernard Roizman and Richard J. Whitley ... 355

Molecular Bacteria–Fungi Interactions: Effects on Environment, Food,
and Medicine
Kirstin Scherlach, Katharina Graupner, and Christian Hertweck 375

Fusarium Pathogenomics
Li-Jun Ma, David M. Geiser, Robert H. Proctor, Alejandro P. Rooney,
Kerry O’Donnell, Frances Trail, Donald M. Gardiner, John M. Manners,
and Kemal Kazan .. 399

Biological Consequences and Advantages of Asymmetric
Bacterial Growth
David T. Kysela, Pamela J.B. Brown, Kerwyn Casey Huang, and Yves V. Brun 417

Archaea in Biogeochemical Cycles
Pierre Offre, Anja Spang, and Christa Schleper 437

Experimental Approaches for Defining Functional Roles of Microbes
in the Human Gut
Gautam Dantas, Morten O.A. Sommer, Patrick H. Degnan,
and Andrew L. Goodman .. 459

Plant Cell Wall Deconstruction by Ascomycete Fungi
N. Louise Glass, Monika Schmoll, Jamie H.D. Cate, and Samuel Coradetti 477

Cnidarian–Microbe Interactions and the Origin of Innate
Immunity in Metazoans
Thomas C.G. Bosch .. 499

On the Biological Success of Viruses
Brian R. Wasik and Paul E. Turner .. 519

Prions and the Potential Transmissibility of Protein
Misfolding Diseases
Allison Kraus, Bradley R. Groveman, and Byron Caughey 543
It’s about time. Your time. It’s time well spent.

Now Available from Annual Reviews:

Annual Review of Virology

virology.annualreviews.org • Volume 1 • September 2014

Editor: Lynn W. Enquist, Princeton University

The Annual Review of Virology captures and communicates exciting advances in our understanding of viruses of animals, plants, bacteria, archaea, fungi, and protozoa. Reviews highlight new ideas and directions in basic virology, viral disease mechanisms, virus-host interactions, and cellular and immune responses to virus infection, and reinforce the position of viruses as uniquely powerful probes of cellular function.

TABLE OF CONTENTS:

- Forty Years with Emerging Viruses, C.J. Peters
- Inventing Viruses, William C. Summers
- PHIRE and TWiV: Experiences in Bringing Virology to New Audiences, Graham F. Hatfull, Vincent Racaniello
- Viruses and the Microbiota, Christopher M. Robinson, Julie K. Pfeiffer
- Role of the Vector in Arbovirus Transmission, Michael J. Conway, Tonya M. Colpitts, Erol Fikrig
- Balance and Stealth: The Role of Noncoding RNAs in the Regulation of Virus Gene Expression, Jennifer E. Cox, Christopher S. Sullivan
- Thinking Outside the Triangle: Replication Fidelity of the Largest RNA Viruses, Everett Clinton Smith, Nicole R. Sexton, Mark R. Denison
- The Placenta as a Barrier to Viral Infections, Elizabeth Delorme-Axford, Yoel Sadovsky, Carolyn B. Coyne
- Cytoplasmic RNA Granules and Viral Infection, Wei-Chih Tsai, Richard E. Lloyd
- Mechanisms of Virus Membrane Fusion Proteins, Margaret Kielian
- Oncolytic Poxviruses, Winnie M. Chan, Grant McFadden
- Herpesvirus Genome Integration into Telomeric Repeats of Host Cell Chromosomes, Nikolaus Osterrieder, Nina Wallaschek, Benedikt B. Kaufer
- Viral Manipulation of Plant Host Membranes, Jean-François Laliberté, Huanquan Zheng
- IFITM-Family Proteins: The Cell’s First Line of Antiviral Defense, Charles C. Bailey, Guocai Zhong, I-Chueh Huang, Michael Farzan
- Glycan Engagement by Viruses: Receptor Switches and Specificity, Luisa J. Ströh, Thilo Stehle
- Remarkable Mechanisms in Microbes to Resist Phage Infections, Ron L. Dy, Corinna Richter, George P.C. Salmon, Peter C. Fineran
- Polynaviruses: Nature’s Genetic Engineers, Michael R. Strand, Gaelen R. Burke
- Human Cytomegalovirus: Coordinating Cellular Stress, Signaling, and Metabolic Pathways, Thomas Shenk, James C. Alwine
- Vaccine Development as a Means to Control Dengue Virus Pathogenesis: Do We Know Enough? Theodore C. Pierson, Michael S. Diamond
- Archaeal Viruses: Diversity, Replication, and Structure, Nikki Dellas, Jamie C. Snyder, Benjamin Bolduc, Mark J. Young
- AAV-Mediated Gene Therapy for Research and Therapeutic Purposes, R. Jude Samulski, Nicholas Muzyczka
- Three-Dimensional Imaging of Viral Infections, Cristina Risco, Isabel Fernández de Castro, Laura Sanz-Sánchez, Kedar Narayan, Giovanna Grandinetti, Sriram Subramaniam
- New Methods in Tissue Engineering: Improved Models for Viral Infection, Vyas Ramanan, Margaret A. Scull, Timothy P. Sheahan, Charles M. Rice, Sangeeta N. Bhatia
- Live Cell Imaging of Retroviral Entry, Amy E. Hulme, Thomas J. Hope
- Paroviruses: Small Does Not Mean Simple, Susan F. Cotmore, Peter Tattersall
- Naked Viruses That Aren’t Always Naked: Quasi-Enveloped Agents of Acute Hepatitis, Zongdi Feng, Asuka Hirai-Yuki, Kevin L. McKnight, Stanley M. Lemon
- In Vitro Assembly of Retroviruses, Di L. Bush, Volker M. Vogt
- The Impact of Mass Spectrometry–Based Proteomics on Fundamental Discoveries in Virology, Todd M. Greco, Benjamin A. Diner, Ilene G. Cristea
- Viruses and the DNA Damage Response: Activation and Antagonism, Micah A. Luftig

Complimentary online access to the first volume will be available until September 2015.
New From Annual Reviews:

Annual Review of Statistics and Its Application

Volume 1 • Online January 2014 • http://statistics.annualreviews.org

Editor: Stephen E. Fienberg, Carnegie Mellon University

Associate Editors: Nancy Reid, University of Toronto
Stephen M. Stigler, University of Chicago

The Annual Review of Statistics and Its Application aims to inform statisticians and quantitative methodologists, as well as all scientists and users of statistics about major methodological advances and the computational tools that allow for their implementation. It will include developments in the field of statistics, including theoretical statistical underpinnings of new methodology, as well as developments in specific application domains such as biostatistics and bioinformatics, economics, machine learning, psychology, sociology, and aspects of the physical sciences.

Complimentary online access to the first volume will be available until January 2015.

TABLE OF CONTENTS:

- A Systematic Statistical Approach to Evaluating Evidence from Observational Studies, David Madigan, Paul E. Stang, Jesse A. Berlin, Martijn Schuemie, J. Marc Overhage, Marc A. Suchard, Bill Dumouchel, Abraham G. Hartzema, Patrick B. Ryan
- The Role of Statistics in the Discovery of a Higgs Boson, David A. van Dyk
- Brain Imaging Analysis, F. DuBois Bowman
- Statistics and Climate, Peter Guttorp
- Climate Simulators and Climate Projections, Jonathan Rougier, Michael Goldstein
- Probabilistic Forecasting, Tilmann Gneiting, Matthias Katzfuss
- Bayesian Computational Tools, Christian P. Robert
- Bayesian Computation Via Markov Chain Monte Carlo, Radu V. Craiu, Jeffrey S. Rosenthal
- Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models, David M. Blei
- Structured Regularizers for High-Dimensional Problems: Statistical and Computational Issues, Martin J. Wainwright
- High-Dimensional Statistics with a View Toward Applications in Biology, Peter Bühlmann, Markus Kalisch, Lukas Meier
- Next-Generation Statistical Genetics: Modeling, Penalization, and Optimization in High-Dimensional Data, Kenneth Lange, Jeannette C. Papp, Janet S. Sinsheimer, Eric M. Sobel
- Breaking Bad: Two Decades of Life-Course Data Analysis in Criminology, Developmental Psychology, and Beyond, Elena A. Erosheva, Ross L. Matsueda, Donatello Telesca
- Event History Analysis, Niels Keiding
- Statistical Evaluation of Forensic DNA Profile Evidence, Christopher D. Steele, David J. Balding
- Using League Table Rankings in Public Policy Formation: Statistical Issues, Harvey Goldstein
- Statistical Ecology, Ruth King
- Estimating the Number of Species in Microbial Diversity Studies, John Bunge, Amy Willis, Fiona Walsh
- Dynamic Treatment Regimes, Bibhas Chakraborty, Susan A. Murphy
- Statistics and Related Topics in Single-Molecule Biophysics, Hong Qian, S.C. Kou
- Statistics and Quantitative Risk Management for Banking and Insurance, Paul Embrechts, Marius Hofert

Access this and all other Annual Reviews journals via your institution at www.annualreviews.org.